R Programming Language Download Mac

Posted on

Jul 16, 2020. R is a computer language. It’s a tool for doing the computation and number-crunching that set the stage for statistical analysis and decision-making. RStudio is an open source integrated development environment (IDE) for creating and running R code. It’s available in versions for Windows, Mac, and Linux. Although you don’t need an IDE in order.

R is a comprehensive statistical programming language that iscooperatively developed on the Internet as an open source project. Itis often referred to as the “GNU S,” because it almostcompletely emulates the S programming language. It has packages to doregression, ANOVA, general linear models, hazard models andstructural equations.Graphical output can be created using a TeX plug-in to convert the standard ASCII-based output.

R has a massive range of tests, PDF and PostScript output, a function to expand zip archives, and numerous other unexpected features. R programs and algorithms are distributed by the Comprehensive R Archive Network (CRAN). A simple graphic user interface is included for Mac users; R Commander can be installed using the built-in package installer, which can also install file import features (which aren't installed by default). R Commander is an X11 program, which means it uses an alien interface and has odd open/save dialogues, but if you get past that it offers menu driven commands not dissimilar from, say, SPSS, just a lot more awkward to use, and without an output or data window.

Like many open source projects, R is exceedingly capable but has a steep learning curve. Some believe this is for the best because people will get a deeper understanding of the statistics they generate with a program such as R, versus one which allows the rapid creation of scads of irrelevant statistics leading to incorrect conclusions. Those who expect even a basic graphical interface (e.g. SPSS 4) may be disappointed by the R community’s definition of a GUI.

Most of this page is rather out of date. See our free software page for more current but less detailed information.

Ashish Ranpura wrote:

Last week I finally put R through its paces on two recent experiments from our lab. It performed spectacularly. It's pretty easy to learn using online tutorials, in particular John Verzani's tutorial which is a course in introductory statistics using R.

The highlight: figuring out the 15 or so commands to import, parse, slice and graph a 3-way comparison of control subjects using a scatterplot and a violin plot. Then using BBEdit to search and replace the word 'control' with my two experimental conditions, pasting that back into R, and generating a report with all 6 graphs in about 3 keystrokes! Now that's how a program ought to work.

But the major advantages of R are that it is absolutely cross-platform (Linux, MacOS, Windows) and that it's open source. You've a good chance of accessing your data 10 years from now, which I wouldn't say with the commercial packages. The user base is large, active, and productive. The S language on which it's based is a well-accepted standard in statistics. R has stood the test of time and is likely to continue to do so.

There is one significant caveat: R is relentlessly command-line driven, and even the graphs cannot be edited with mouse clicks. It's trivial to take the PDF graphs into Illustrator, though, so this limitation hasn't been a problem for me.

Some resources include:

  • The R project home page (with download links)
  • This web page on R, S and S/Plus statistics systems, which provides a background on the software and summarizes available packages
  • Using R for structural equation modeling

R has a massive range of tests and now has Matrix as a recommended package, a useKerning argument for PDF and PostScript output, a recursive argument for file.copy(), an unzip function to expand or list zip archives, and other changes.

There is a R for Mac Special Interest Group, called R-Sig-Mac. Thegroup is implemented as an e-mail list. You can subscribe to the list or see the archives going to its official web page:http://www.stat.math.ethz.ch/mailman/listinfo/r-sig-mac

Best Programming Language For Mac

S and R Programming Languages

Logo Programming Language Mac

Beginning in 1976, the Sprogramming language was developed at Bell Labs (whose statisticsdepartment employed John Tukey and Joseph Kruskal) by John Chambersand others. Version 1 required Honeywell mainframes, Version 2 (1980)added Unix support, Version 3 (1988) added functions and objects, andVersion 4 (1998) added full support for object-oriented design. In 1993, Bell Labs issued an exclusive license toStatSci (later MathSoft).S-Plus is Mathsoft’s commercial implementation of S, and the only waythe language is available outside Lucent.

Basic Programming Language For Mac

R was begun by Robert Gentleman and Ross Ihaka of the Universityof Auckland. It is now an opensource project staffed by volunteers from around the world whose development is coordinated through the Comprehensive R Archivenetwork. Source code, binaries, and documentation areat the CRAN website.

Documentation that compares R and S include:

  • The R and S discussion in CRAN’s FAQ.
  • The online supplement to Venables and Ripley (1999).
  • The published text of Venables and Ripley (2000), and its online errata.

Adapted from an August 2000 Academy of Management workshop on stat packages, we are showing how to use R for analyses common in management research:

Base package commands:

Mac Os X Programming Languages

  • anova: analysis of variance
  • glm: general linear model, including logit, probit and poisson models
  • ls/lsfit: fit an OLS or WLS regression model

Built-in packages

  • ts package:
    • arima: ARIMA time series models

Contributed R packages and their capabilities:

  • boot: bootstrapping and jacknifing
  • coda: analysis and diagnostics for Markov Chain Monte Carlo simulation
  • fracdiff: ARIMA time series models
  • matrix: matrix math
  • cmdscale: multi-dimensional scaling
  • multiv: cluster analysis, correspondance analysis, principal component factor analysis
  • pls: Partial Least Squares structural equation modeling
  • survival5: survival analysis (hazard models)

MacStats created in 1996 by Joel West, Ph.D. of the UCI Graduate School of Management and currently edited by David Zatz, Ph.D., of Toolpack Consulting. Copyright © 2005-2020 Zatz LLC. All rights reserved. Contact us.

Free Download C++ Programming Language

You can find the installation files and all necessary information regarding installation on one of the mirror sites of the Comprehensive R Archive Network (CRAN). Select the link for your operating system, which will take you to the download site for the latest distribution of R.

You can find detailed installation instructions in the R Installation and Adminstration manual on CRAN. For Windows, you take the following steps:

R Programming Language Download Mac Download

R Programming Language Download Mac

R Programming Language Download Mac Os

  1. Go to CRAN, click Download R for Windows, click Base, and download the installer for the latest R version.

  2. Right-click the installer file and select Run as Administrator from the pop-up menu.

  3. Select the language to be used during installation.

    This doesn’t change the language used by R; all messages and Help files remain in English.

  4. Follow the instructions of the installer.

    You can safely use the default settings and just keep clicking Next until R starts installing.

Python Programming Language Mac

R exists in a 32-bit and 64-bit architecture. If you have a 64-bit Windows version, you can easily install both architectures next to each other. (The installer will do this by default.) For other systems, you can find more information in the R Installation and Administration manual.

The 32-bit version of R is perfectly fine — sometimes it’s even a bit faster than the 64-bit version. You need the 64-bit version only if you require more work memory than the 32-bit version can handle. (On Windows, the maximum is about 3GB for a 32-bit system.)

If you want to be able to personalize your R installation as explained here, you should install R outside the Program Files folder (for example, in C:R). This way, you avoid trouble with the default Windows folder protection.

Mac OS X and Linux users especially need to read the instructions on the CRAN site carefully. R can be installed on all systems, but depending on your version of OS X or Linux, you may need to follow special procedures to install R successfully. Not following these procedures could harm your system.